
Evaluating Textual Features and Oversampling for Automatic Stance
Detection

Robert Pugh
Indiana University
pughrob@iu.edu

Jongwon Lee
Indiana University
leejojo@iu.edu

Abstract

We describe a series of experiments fo-
cused on a number of basic textual fea-
tures and their effectiveness at the task
of automatic stance detection. Specifi-
cally, we evaluate the impact of bag-of-
words (BoW) features, sentiment lexicon
features, and syntactic features on the per-
formance of an Support Vector Machine
(SVM). Based on our analysis, we find
that the words in a tweet offer the most in-
sight into the stance, and that adding fea-
tures from sentiment lexicons can improve
the performance. Additionally, we find
that one target showed a performance in-
crease when adding syntactic dependency
features. In addition, we identify chal-
lenges related to class imbalance, gener-
ally small data volume, and data quality.

1 Overview

Stance detection is the task of automatically deter-
mining from a given text whether the stance of the
author is in favor of, in opposition to, or neutral
toward a specific target, which can be a person, a
topic, a product, etc. Both Stance detection and
sentiment analysis classify the polarity of a given
text. However, the two are different in that sen-
timent analysis will not expect a target. In this
project, we present the results of stance detection
on Twitter data using supervised approaches.

2 Data

Our dataset comes from the 2016 SemEval Shared
task 6 (Mohammad et al., 2016), and includes
tweets of five distinct targets with stance labeled.
The training data has 2,913 tweets and the test
data has 1,956 tweets, both distributed across 5
targets. Each data point is a tweet associated with

a specific target and a ”stance” label indicating
whether the tweet expresses sentiment in favor
of (FAVOR), in opposition to (AGAINST), or is
neutral toward (NONE) the target. The five targets
are: ‘Atheism,’ ‘Climate Change is a Real Con-
cern,’ ‘Feminist Movement,’ ‘Hillary Clinton,’
and ‘Legalization of Abortion’. Consider this

row:
Tweet: ”if the fetus isn’t inside you, than shut up
love semst”
Target: Legalization of Abortion
Stance: FAVOR
Sentiment: Negative

A standard sentiment analyzer will be able
to label this tweet to Negative. Also, humans
can interpret this tweet to be AGAINST the
target, ’Legalization of Abortion’. However, for a
machine, it may be challenging to label the tweet
with the correct stance.

Figure 1: Stance Distribution of 5 Targets

We processed the dataset by lower-casing each
tweet, removing URLs, and removing the #SemST
hashtag (present in all tweets). We use the to-



HillaryClntn Abortion Atheism ClimateChng FeministMvmt

Baseline w1 0.307 0.523 0.313 0.408 0.553

Individual
Features

w1 0.438 0.579 0.378 0.418 0.502
sj 0.246 0.269 0.281 0.281 0.261
ac 0.246 0.269 0.280 0.321 0.334
ab 0.245 0.269 0.281 0.281 0.261
d 0.323 0.372 0.275 0.371 0.338
sn 0.267 0.34 0.332 0.17 0.338
w1w2 0.472 0.535 0.452 0.414 0.441
w1w2w3 0.483 0.511 0.383 0.414 0.427

Feature
Combinations

w1+sj 0.454 0.57 0.387 0.419 0.514
w1+sj+ac 0.459 0.572 0.398 0.422 0.515
w1+sj+ab 0.439 0.56 0.385 0.396 0.507
w1+sj+ac+d 0.385 0.559 0.375 0.396 0.548
w1+sj+ab+d 0.429 0.559 0.361 0.418 0.57
w1+sj+ac+sg 0.361 0.488 0.369 0.265 0.453
w1+sj+ab+sg 0.355 0.538 0.372 0.269 0.508
w1+sj+ac+sg+d 0.32 0.444 0.311 0.248 0.541
w1+sj+ab+sg+d 0.331 0.444 0.333 0.257 0.548

Table 1: Results (macro-averaged f1-scores) for baseline (no hpo), individual features with hpo, and
feature combinations with hpo. The best performance per target is listed in bold. BoW= w1=Bag-
of-words; w1w2=Unigrams and bigrams; w1w2w3=Unigrams, bigrams, and trigrams; sj=Subjectivity
lexicon features; ac=Arguing lexicon features with multiple categories; ab=Arguing lexicon combined;
d=Bag-of-Dependencies; sn=Bag-of-Syntactic-Ngrams

kenizer, part-of-speech tagger, and dependency
parser in the en core web md model provided
by the SpaCy package for Python (Honnibal and
Montani, 2017). We mostly used the default set-
tings in this model’s pipeline, with the exception
of the tokenizer: we customized the tokenization
behavior to not split hashtags into two tokens.

We found the Stance label distribution for ’Cli-
mate Change is a Real Concern’ is overly skewed.
Also, other targets’ stance label distribution are
considered skewed (Figure 1). We attempt to ad-
dress (or at the very least explore) a solution to this
challenge via a popular oversampling technique,
described in more detail in Section 5.

3 Support-Vector Machines

The Support-vector machine (SVM) is a discrim-
inative machine-learning algorithm that attempts
to identify a decision boundary between data from
different classes, using a ”kernel” to efficiently
achieve this goal for classes with feature values
that may not be linearly separable. SVMs have
been proven very effective for text classification,
and have been a staple in the field of natural lan-

guage processing for decades (Rennie and Rifkin,
2001). The experiments described in the follow-
ing sections all used the Support Vector Machine
(SVC) implementation, based on libsvm, from
the Scikit-learn Python package (Pedregosa et al.,
2011).

4 Feature Sets

In this section we provide a brief description of the
different feature sets we investigated.

Filtered Bag-of-Words The BoW feature set is
simply the set of words that occurs in a given
post. These are represented as a large sparse vec-
tor, where each dimension corresponds to a unique
word. For our experiments, we count each word
in a post and use this frequency as the value of the
corresponding dimension. To reduce the noisiness
of this feature, we only include Nouns, Verbs, Ad-
jectives, and Hashtags.

Subjectivity Lexicon Features Since our
dataset is relatively small for a given target, it
is unlikely that our model can learn all of the
nuances relating word-usage and sentiment by just



HillaryClinton LegalizationAbortion Atheism ClimateChange FeministMovement

w1 0.355(-0.083) 0.321(-0.258) 0.366(-0.012) 0.298(-0.12) 0.314(-0.188)
sj 0.331(+0.085) 0.27(+0.001) 0.318(+0.037) 0.268(-0.013) 0.31(+0.049)
ac 0.313(+0.067) 0.311(+0.042) 0.33(+0.05) 0.167(-0.154) 0.327(-0.007)
ab 0.315(+0.07) 0.325(+0.056) 0.353(+0.072) 0.17(-0.111) 0.32(+0.059)
d 0.324(+0.001) 0.348(-0.024) 0.307(+0.032) 0.363(-0.008) 0.338
sn 0.299(+0.032) 0.342(+0.002) 0.335(+0.003) 0.17 0.338
w1w2 0.506(+0.034) 0.535 0.452 0.414 0.441
w1w2w3 0.483 0.511 0.383 0.414 0.427

w1+sj 0.399(-0.055) 0.57 0.382(-0.005) 0.409(-0.01) 0.5(-0.014)
w1+sj+ab 0.431(-0.028) 0.572 0.412(+0.014) 0.405(-0.017) 0.517(+0.002)
w1+sj+ac 0.428(-0.011) 0.56 0.387(+0.002) 0.396 0.507
w1+sj+ab+d 0.434(+0.049) 0.556(-0.003) 0.377(+0.002) 0.45(+0.054) 0.546(-0.002)
w1+sj+ac+d 0.444(+0.015) 0.547(-0.012) 0.361 0.439(+0.021) 0.57
w1+sj+ab+sg 0.361 0.511(+0.023) 0.369 0.265 0.575(+0.122)
w1+sj+ac+sg 0.355 0.463(-0.075) 0.378(+0.006) 0.269 0.599(+0.091)
w1+sj+ab+sg+d 0.315(-0.005) 0.444 0.395(+0.084) 0.248 0.545(+0.004)
w1+sj+ac+sg+d 0.354(+0.023) 0.444 0.42(+0.087) 0.257 0.571(+0.023)

Table 2: Results (macro-averaged f1-scores) for individual features and feature combinations when using
Synthetic Minority Oversampling (SMOTE oversampling) of the minority class. The best performance
per target in this experiment is listed in bold, and any scores that are the best of all experiments on a
given target (including comparisons to Table 1) is underlined. Scores that improved compared when
using SMOTE are listed in green, and those that decreased are in red. w1=Bag-of-words; sj=Subjectivity
lexicon features; ac=Arguing lexicon features with multiple categories; ab=Arguing lexicon combined;
d=Bag-of-Dependencies; sn=Bag-of-Syntactic-Ngrams

observing the patterns in the training set. Thus, we
leverage lexical resources containing sentiment
information about several words. The Subjectivity
Lexicon (Wilson et al., 2005) contains polarity
(e.g. Positive or Negative) and strength (Strong
or Weak) for over 8,000 words. To combine the
BoW feature set with the Subjectivity Lexicon, we
concatenate the BoW vector to a 2-dimensional
vector (Positive and Negative) with the counts of
words for each polarity.

Arguing Lexicon Features We use the Arguing
Lexicon (Somasundaran et al., 2007), which con-
tains patterns indicative of arguing in 17 different
domains (e.g. assessments, authority, etc.), as the
basis of an additional feature. We used these pat-
terns in two ways:

1. We created a 17-dimension vector (1 per cat-
egory of arguing), and added the frequency
with which any of the patterns correspond-
ing to that category as the value of the re-
spective dimension. Thus if we found two
matching patterns for assessments and one

for difficulty, then the vector would have 15
zeros, one dimension with a value of 2, and
one dimension with a value of 1. This 17-
dimension vector was concatenated with the
other relevant feature vectors for our experi-
ments.

2. Since there are not many patterns per cate-
gory, and it wasn’t clear exactly how the ar-
guing categories might be particularly useful
for stance detection, we also tried simply cal-
culating the sum of all matching patterns, re-
gardless of category. In this case, we simply
concatenated a 1-dimension vector of match
frequency to the other relevant feature vec-
tors.

Bag-of-Dependencies Additionally, we ex-
plored the value of incorporating syntactic
information to our system. The first method for
doing this involved generating head-dependent-
relation triples from a dependency parse of the
tweet. This resulted in a ”bag-of-dependencies”,
the vector for which could be concatenated with



other feature vectors.

Bag-of-Syntactic-ngrams We also explore syn-
tactic n-gram features, which are similar to word
n-grams except that their neighborhood is defined
based on their syntactic relationships instead of
the surface-level ordering (Sidorov et al., 2014).
These features have been shown to be effective
in a number of text classification tasks (Sidorov,
2019). We use the simplest form of syntactic
ngrams, namely bigrams and trigrams of words in
the dependency tree (as opposed to including the
syntactic relation in the ngrams).

Unigrams, Bigrams, and Trigrams In addition
to the features listed above, we also tested tf*idf-
weighted ngrams. We investigated the combina-
tion of unigrams and bigrams, and unigrams, bi-
grams, and trigrams.

5 Experiments

For all of the experiments described below, we
trained 5 separate models (one per target). As an
initial baseline, we trained the SVM on bag-of-
word count features using the default SVM set-
tings1. To start, we trained an SVM on each of the
individual features listed above. Next, in order to
get a sense of the improvement achieved by com-
bining features, we added features one-by-one in
the order they were listed in the assignment2 With
the exception of the initial baseline experiment
(BoW features only), we performed 5-fold cross-
validation grid search on the training set for each
experiment to select the hyper-parameters (we re-
fer to this process, hyper-parameter optimization,
as hpo throughout the paper). Specifically, we
explored the regularization parameter (C), linear
vs. rbf kernel, and the gamma parameter for the
rbf kernel. For evaluation, we follow the original
shared task in using the macro-averaged f1-score.
This metric is especially useful given skewed label
distributions, since a poor model that always pre-
dicts the majority class may still have decent accu-
racy or micro-averaged f1-scores. One difference
between our metric and the one reported by the
original shared task paper is that, unlike the shared
task paper, we include the NONE class in our f1-
score calculation. This decision was motivatd by

1C=1.0, kernel=rbf, gamma=(1/(n features ∗
training variance))

2Ideally we would perform a complete ablation test, try-
ing all possible feature set combinations. However, given
time constraints we decided to skip this.

the real-world use-case of having to classify stance
on social media data. Unless there is an indepen-
dent model deciding whether each tweet is about a
topic, the stance-detection model itself should be
able to distinguish between all three classes well.

5.1 SMOTE oversampling
As we noted above, many of the targets in the
stance detection data set are highly skewed. We
explore whether we can mitigate the impact of
this label imbalance by re-running all of our ex-
periments using the SMOTE oversampling tech-
nique (Chawla et al., 2002), which generates syn-
thetic examples from the minority class that are
very close in the feature space to the original
data points. Specifically, we use the SMOTE im-
plementation provided by the Imbalanced Learn
Python package (Lemaı̂tre et al., 2017), and over-
sample the less-frequent of either FAVOR or
AGAINST. We chose not to oversample the NONE
class since these tweets are much noisier and it
is harder to model their out-of-dataset distribu-
tion (i.e. there are nearly infinite ways in which
a tweet could NOT have a stance, thus generating
synthetic samples of this class would likely further
increase noise).

6 Results

The performance of individual features with
hyper-parameter optimization (HPO) and BoW
with default settings are listed in the top part Table
1. There are three points of note in these results:

1. HPO has a positive impact on the perfor-
mance of virtually all targets. The one
exception to this is the target ”Feminist
Movement”, where it appears that grid-
searching derived by hyper-parameters were
sub-optimal on the test set (the performance
of the BoW features with the default hyper-
parameters performs quite well for this tar-
get). We suspect that this is due to differ-
ences in the data between the training and test
set, since optimizing on the training data re-
sulted in worse test-set performance. Never-
theless, there seems to be a clear signal that
grid search on the training data is effective.

2. Simple word-level features are by far the
most effective. In every target, the best-
performing individual feature is either fil-
tered unigrams or a tf*idf-weighted n-gram
combination.



3. Dependency-based features are less-effective
than the simple word features, but more ef-
fective than the two lexicon features by them-
selves. In some sense, both of our depen-
dency features carry similar information as
the word n-gram features (i.e. they tell our
model which words occur in the text). The
major difference is that the dependency fea-
tures offer additional structural information
which can by beneficial (as we will see be-
low), but also be more sparse than simple n-
grams, making them less effective individu-
ally.

The concatenation of these features occasionally
resulted in better performance than the individ-
ual feature experiments, though in three out of
the five targets the best performance was achieved
by individual word-level features. For ”Climate
Change”, the combination of unigrams, subjec-
tivity lexicon features, and categorical arguing
lexicon features (w1+sj+ac) achieved the best
performance, and for ”Feminist Movement” the
best-performance was achieved by unigrams, sub-
jectivity lexicon, arguing lexicon, and bag-of-
dependencies features. It appears that the addition
of curated linguistic features (the subjectivity and
arguing lexicons) can offer important insight that
perhaps is not learned by simple word features,
particularly, we suspect, given the relatively small
number of samples.

Finally, the results of using SMOTE for over-
sampling the minority class can be seen in Table 3.
Generally, scores for each featureset increased or
remained the same, with a minority of experiments
(23/85) showing decreased performance. More
importantly, we saw that using SMOTE achieved
the highest overall score for three of the five tar-
gets, including Climate Change, the most skewed
targets. These results suggest that, in cases with
imbalanced labels, data generation and augmen-
tation techniques such as synthetic oversampling
should probably be explored in addition to linguis-
tic feature engineering.

7 Future Work

For future work, we are interested in exploring
other feature types, namely character-based fea-
tures and word/sentence embeddings. One pro-
posed advantage of using character features (such
as character ngrams) is that they can carry sig-
nificant information even when there are mis-

spellings or orthographic variation. For exam-
ple, the word ”feminits” would likely be out-of-
vocabulary (OOV) using word n-grams, or at the
very least would have few examples. Using char-
acter n-grams, on the other hand, we could still
extract a feature for ”femin”, which would cor-
rectly be associated with words like ”feminine”,
”feminist”, etc. Additionally, character-ngrams al-
low us to extract potential words from within hash-
tags, an important word-type on Twitter. A hash-
tag like ”sheaintmypresident” probably only oc-
curs once or twice (if at all) in any reasonably-
sized training set. Using character n-grams, how-
ever, we can extract the sequence ”presid” or
”she”, both of which may have important sig-
nals learned from other non-hashtag words. Word
and sentence embeddings give us the advantage
of learning implicit knowledge about words and
sequences of words which we would be unable
to learn from the training data alone. By train-
ing word vectors on millions of Tweets, we may
learn an important relationship between words like
”clinton” and, e.g. ”benghazi”, or the similarity
of ”bikini” and ”swimsuit” (words that appear in
the Feminist Movement target with non-trivial fre-
quency). Thus, learning good representations for
words and/or sentences on high volumes of data
may grant us access into relationships between the
words that we likely would not otherwise obtain
via simple BoW features and weights trained only
on a training set of less than 1,000 words. Fi-
nally, based on our modest success at improving
scores using SMOTE, we are interested in explor-
ing additional methods for automatically creating
new labeled data, giving our model more exam-
ples from which to learn. For instance, we are
curious to explore the impact of data augmen-
tation via natural-language transformation such
as the methods explored in Dhole et al. (2021).
This would involve automatically making small
changes to the language used in some examples,
small enough so that the label doesn’t change, but
large enough to give our model more examples.
For instance, replacing adjectives with close syn-
onyms, adding/removing punctuation, and back-
translating (automatically translating from English
to another language, and then translating it back).
Finally, we would like to pursue methods of data-
programming to produce more labeled data with-
out the time and effort required to manually la-
bel each data point. Frameworks such as Snorkel



(Ratner et al., 2017) make it relatively straightfor-
ward to leverage human intuitions to create a large
set of weak, noisy labeling functions, and lever-
age information about their intersections to create
probabilistically-labeled datasets.

8 Conclusion

We provided a detailed account of numerous tex-
tual features’ impact on the automatic classifica-
tion of stance towards five targets. We found
that, individually, word unigram, bigram, and tri-
gram counts were the strongest features across the
board. However, combining them with additional
lexical features and, on occasion, syntactic fea-
tures, can improve the system’s performance even
further. Finally, we demonstrated the effective-
ness of synthetic minority oversampling on per-
formance for many feature sets, and in particular
on an especially skewed dataset.

References
Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall,

and W Philip Kegelmeyer. 2002. Smote: synthetic
minority over-sampling technique. Journal of artifi-
cial intelligence research, 16:321–357.

Kaustubh D Dhole, Varun Gangal, Sebastian
Gehrmann, Aadesh Gupta, Zhenhao Li, Saad
Mahamood, Abinaya Mahendiran, Simon Mille,
Ashish Srivastava, Samson Tan, et al. 2021.
Nl-augmenter: A framework for task-sensitive
natural language augmentation. arXiv preprint
arXiv:2112.02721.

Matthew Honnibal and Ines Montani. 2017. spaCy 2:
Natural language understanding with Bloom embed-
dings, convolutional neural networks and incremen-
tal parsing. To appear.

Guillaume Lemaı̂tre, Fernando Nogueira, and Chris-
tos K Aridas. 2017. Imbalanced-learn: A python
toolbox to tackle the curse of imbalanced datasets in
machine learning. The Journal of Machine Learning
Research, 18(1):559–563.

Saif Mohammad, Svetlana Kiritchenko, Parinaz Sob-
hani, Xiaodan Zhu, and Colin Cherry. 2016.
Semeval-2016 task 6: Detecting stance in tweets. In
Proceedings of the 10th international workshop on
semantic evaluation (SemEval-2016), pages 31–41.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. 2011. Scikit-learn:
Machine learning in python. Journal of machine
learning research, 12(Oct):2825–2830.

Alexander Ratner, Stephen H Bach, Henry Ehrenberg,
Jason Fries, Sen Wu, and Christopher Ré. 2017.
Snorkel: Rapid training data creation with weak su-
pervision. In Proceedings of the VLDB Endowment.
International Conference on Very Large Data Bases,
volume 11, page 269. NIH Public Access.

Jason DM Rennie and Ryan Rifkin. 2001. Improving
multiclass text classification with the support vector
machine.

Grigori Sidorov. 2019. Syntactic n-grams in computa-
tional linguistics. Springer.

Grigori Sidorov, Francisco Velasquez, Efstathios Sta-
matatos, Alexander Gelbukh, and Liliana Chanona-
Hernández. 2014. Syntactic n-grams as machine
learning features for natural language processing.
Expert Systems with Applications, 41(3):853–860.

Swapna Somasundaran, Josef Ruppenhofer, and Janyce
Wiebe. 2007. Detecting arguing and sentiment in
meetings. In Proceedings of the 8th SIGdial Work-
shop on Discourse and Dialogue, pages 26–34.

Theresa Wilson, Janyce Wiebe, and Paul Hoffmann.
2005. Recognizing contextual polarity in phrase-
level sentiment analysis. In Proceedings of human
language technology conference and conference on
empirical methods in natural language processing,
pages 347–354.

9 Appendix

Below, we present the results of running the same
experiments described in this paper, using a Ran-
dom Forest classifier instead of an SVM. For some
experiments, the Random Forest performs better
than the SVM, but the best-performing SVM ex-
periment is better than the best-performing Ran-
dom Forest experiment for all 5 targets. Similar to
the SVM experiment results, we find that the word
features appear to be the most valuable, with only
one of the five targets having its best performance
outside of the simple n-gram features.



HillaryClinton LegalizationAbortion Atheism ClimateChange FeministMovement

w1 (no hpo) 0.394 0.562 0.312 0.363 0.408

w1 0.436 0.526 0.41 0.377 0.524
sj 0.255 0.268 0.317 0.288 0.254
a1 0.26 0.269 0.279 0.321 0.319
a 0.246 0.269 0.281 0.3 0.261
d 0.302 0.33 0.318 0.338 0.341
sg 0.284 0.322 0.324 0.419 0.367
w1w2 0.438 0.477 0.468 0.307 0.449
w1w2w3 0.398 0.441 0.451 0.304 0.446

w1+sj 0.432 0.516 0.426 0.371 0.509
w1+sj+a 0.345 0.507 0.429 0.367 0.504
w1+sj+a1 0.416 0.515 0.425 0.371 0.482
w1+sj+a+d 0.321 0.505 0.352 0.364 0.501
w1+sj+a1+d 0.296 0.499 0.417 0.401 0.49
w1+sj+a+sg 0.307 0.52 0.411 0.36 0.532
w1+sj+a1+sg 0.291 0.515 0.397 0.357 0.515
w1+sj+a+sg+d 0.303 0.513 0.417 0.352 0.526
w1+sj+a1+sg+d 0.3 0.526 0.395 0.35 0.517

Table 3: Results (macro-averaged f1-scores) ffor individual features and feature combinations when us-
ing Random Forest. For all but the first row (the baseline), we selected hyper-parameters via 5-fold cross-
validation on the training data. sw1=Bag-of-words; sj=Subjectivity lexicon features; ac=Arguing lexicon
features with multiple categories; ab=Arguing lexicon combined; d=Bag-of-Dependencies; sn=Bag-of-
Syntactic-Ngrams


