
Social Media Community Identification and Analysis: An Overview

Franklin Louis
Indiana University
fblouis@iu.edu

Hithesh Busetty
Indiana University

bhithesh@iu.edu

Jongwon Lee
Indiana University
leejojo@iu.edu

Joy Zayatz
Indiana University
jzayatz@iu.edu

Tanukrishna Chetia
Indiana University
tchetia@iu.edu

Abstract

The proposed article discusses the topic
of community detection and analysis
in the context of Social Media. We
discovered diverse libraries and tools
that are available for solving a network
science problem. The most efficient way
to get started was to use the Twitter API’s
search function to collect Twitter data,
cleanse/transform with pandas, then use
NetworkX to create a graph and compute
graph analytics. Gephi was the easiest
way to stream Twitter data and visualize a
graph exported from NetworkX. We did
not explore R packages as much as Python
ones, but similar libraries are available
in both. Neo4j was more suited for large
datasets, but a toy dataset should be used
to learn how to write Cypher queries.
While Neo4j does not have as many graph
algorithms in its Graph Data Science
Library as are available elsewhere, if those
properties are written into the graph data,
Neo4j is a good way to isolate and visual-
ize smaller parts of the network or execute
complex queries about the network.
Cytoscape was very difficult to use and
it takes a lot of time to render the Network.

Keywords— Network Science, Natural Language
Processing, Social Media, Twitter, Community
Detection, Telecritical Care, Wildfire Mitigation,
Louvain Modularity

1 Introduction

The widespread adoption of social media has led
to a boom in user-generated content. Users in
various capacities: professionals, enthusiasts, by-
standers, policy-makers, etc. can share experi-
ences, knowledge, and observations and commu-
nicate on platforms like Twitter. Social media is
increasingly becoming a crucial communication
platform for scientists to communicate with peers
and general audiences in near real-time (Walter,
2019). Community detection has no universal def-
inition, which makes it challenging to evaluate the
performance of an algorithm or a model and, at

the same time, allows diverse approaches to prob-
lems (Fortunato, 2016). The association of entities
such as online users, visual content, and metadata
leads to the formation of Social Media Networks.
Analyzing the structure of such networks can un-
cover the structure and boundaries of communities
within a Social Media Network (Papadopoulos,
2012). In this project, we provide an overview of
publicly available network science analytics and
visualization tools. We focus on discovering lu-
minaries, who are the most important and influen-
tial individuals in a network and detecting com-
munities within the network. Given a collection
of Twitter data, the purpose of this project is to
1) identify the most influential individuals in the
network (luminaries), 2) model and visualize the
network’s communities as a graph, and 3) aggre-
gate important tweets (text, hashtags, etc.) in that
network.

2 Objective

The scope of the project as a whole is to be able to
identify luminaries, visualize network structures,
and aggregate important tweets for a collection of
Twitter data. The end product would include an
interface for users to import data, identify and vi-
sualize then run and visualize their network of in-
terest. This is the first semester of this project.
We establish a foundation of background knowl-
edge, explore methods and tools, and create a pro-
totype that is a proof of concept for data inges-
tion, cleansing, analysis, and visualization. More-
over, we explore tools/methods and identify the
pros and cons of each for use in future work. Also,
we suggest repeatable/reusable methods that can
be used by different interest groups.

• Provide an overview document to help fu-
ture students understand the concepts used in
this project, including network science, graph



databases, a survey of analytical tools, etc.
• Create ELT pipeline to collect and store Twit-

ter data, and transform/cleanse into the for-
mat required for analytical tools

• Implement model(s) for community detec-
tion and other network analytics

• Visualize networks by their communities
• Build a suggested roadmap for the future

groups to continue the project

3 Dataset and Methods

We aim to build a Twitter Luminaries Model to
examine the tele-critical care domain, use network
analytics to identify influential members of a net-
work, and apply community detection algorithms.
To do so, we collect a set of Tweets containing
words about tele-critical care from the Twitter API
V2.

3.1 Dataset
We use Tweepy and Jupyter notebook to collect
Twitter data. We store this data in a MongoDB
Atlas cluster. The data stored in MongoDB are
stored in three collections

• luminary tweets: 677,399 tweets from ac-
counts listed in the luminaries list. This
dataset is the payload from the API without
modification.

• tweets telecritical: 5,914 tweets that talk
about tele-critical care. This dataset in-
cludes the API payload plus the user ids that
retweeted them, and any relevant tweets the
retweeter then tweeted.

• users telecritical: 4,313 users who authored
the tweets in the tweets telecritical collec-
tion. This dataset includes the API payload
plus the user ids of the accounts the users are
followed by and are following.

3.2 Methods
We use the initial set of tweets to build the next
layer of the network by connecting the original
set of tweets and users with various types of re-
lationships, e.g. followers, retweets, and men-
tions, then iterate to create each successive layer
of the network. Once the network is constructed,
we implement network analytics to calculate met-
rics such as centrality and modularity (measures
the strength of division of a network into modules)
on the constructed network. Lastly, we visualize

the network by calculated analytics. The list of li-
braries and technologies used in this project are as
follows:

• Twitter API V2: Elevated Twitter Developer
account, Tweepy Data ETL, cleaning: pandas

• Network Analysis: NetworkX, igraph,
Gephi, Neo4j Graph Data Science Library,
Cytoscape

• Graph database: Neo4j Desktop, Py2neo
• Graph visualization: Matplotlib, Gephi,

Neo4j Bloom, jgraph, neo4jupyter, d3.js, Cy-
toscape

4 Observations

4.1 Data collection and storage - Tweepy and
MongoDB

We discovered using Tweepy to collect Twitter
data and storing it in MongoDB was well suited
for our project. Leveraging both methods in a
jupyter notebook allowed us to collect various
types of data. During this process, using sleep
timers prevented us from being caught by Twitter’s
API rate limits. MongoDB’s semi-structured data
schema quickly ingests the json format that comes
from the Twitter API. The fetched data in csv or
json format is cleaned/transformed using pandas.
We used Gephi’s Twitter plugin to stream Twitter
data. Gephi has a statistics feature that generates
a visualization to check if the query used to filter
the Twitter stream is generating the type of data
you are interested in.

4.2 Network Construction and Analysis -
NetworkX, Neo4j

Network construction from pandas was a good
way to make sure the API queries are returning
relevant data. The values selected for max limit
returned by each API query (100 was the largest
number we used, and we also used 50 in some
cases) were too small to distinguish nodes from
each other. Community detection and centrality
algorithms provide more useful information when
the network nodes are too similar. For analy-
sis, NetworkX had the most complete library (or
compatible with other libraries) of graph analyt-
ics. NetworkX’s methods for creating networks
from pandas dataframes are also a convenient way
to build a network quickly.

We did not use any large datasets in this project,
but it seemed that NetworkX started taking longer

2



times to compute network statistics even in net-
works with greater than 5000 nodes. Neo4j is ad-
vertised to be scalable to large datasets. We found
the learning curve to begin using Neo4j is steeper
than with NetworkX (may take up to 3 weeks to
learn how Neo4j works and Neo4j’s Cypher query
language), but Neo4j is specialized to work with
graph data and has much more capability to store
and query attributes for nodes and edges. Neo4j’s
Graph Data Science Library is a powerful tool and
is advertised to be able to be scaled for large data
sets, but the algorithms available are not as numer-
ous as NetworkX.

4.3 Graph Visualization - Neo4j, Neo4j
Bloom, igraph, Gephi, Cytoscape

NetworkX has built-in methods to visualize graphs
with Matplotlib. This quickly shows a general pic-
ture of what we are working on with NetworkX in
a jupyter notebook. However, we found that ex-
porting the NetworkX data to Gephi was an eas-
ier way to visualize the graph data by network
statistics with various layout options because you
can do everything within the graphic user interface
rather than creating it in lines of Python. Neo4j is
useful because it can return query results as either
tables or graphs, so if you want to “zoom” in on
a certain aspect of the graph, you can query for
it and see the graphical depiction without an ex-
tra step. Neo4j’s Bloom application in the desktop
client is also fairly capable and easy to start us-
ing. Bloom allows you to filter and query for spe-
cific nodes and relationships and change the ap-
pearance of notes and relationships by analytics
already written in the graph. A limited number of
graph algorithms can be run in Bloom, but it’s not
many, and the data has to be in a Neo4j sandbox,
rather than a local graph DBMS. Bloom does not
have the range of layout options that Gephi does.

5 Instructions

5.1 Tweepy and MongoDB

• Twitter API V2: The data collected from
Twitter requires an Elevated Twitter Devel-
oper account. (An Academic Research ac-
count would provide a higher monthly quota
and more access to Twitter data)

• MongoDB: We have set up a MongoDB Atlas
cluster to store twitter data and added fields,
e.g., a list of follower user ids, so the network
can be recreated using data stored in Mon-

goDB, rather than querying the Twitter API
again.

5.2 NetworkX
We used Tweepy to collect the tweets and user data
from the 7-day lookback search. We started with
a group of tweets containing relevant text and cre-
ated 2 types of networks. In both types of net-
works, the “source” and “target” nodes are com-
bined in a Pandas Dataframe that can be used by
NetworkX to create a graph. We also performed
network analysis with NetworkX, including com-
munity detection with Louvain and Leiden algo-
rithms.

• Network of followers: Nodes are users, and
edges are followers. Nodes representing fol-
lowers have edges directed back to the user
they are following. Because the Twitter API
has the capability to find a user’s followers
and who the user is following, the network
can be built in both directions from each user
node. Start with a set of tweets, find the tweet
that has the highest public metric score, and
select the author of that tweet at the lumi-
nary. Find 100 users that follow the luminary.
Find 100 accounts that the luminary is fol-
lowing. For each follower, find 50 accounts
that they follow. Repeat twice. Compute
network analytics and visualize with Net-
workX/matplotlib and Gephi

Figure 1 is created with Gephi’s Circle pack
layout and groups the network by modularity.
Clusters with the largest number of nodes are
colored with colors other than gray. Figure 1
shows that the network has many small clus-
ters and a few large clusters. This indicates
that nodes in this network do not have many
edges connecting to other nodes.

• Network of Retweets: nodes are users and
edges are retweets. Nodes representing
retweeters have a directed edge point back
to the original author. The relevant tweets of
the retweeters are used to build the next level
of the network. Start with a set of tweets,
find tweets that have the highest public met-
ric score, get retweeters for those tweets,
and find retweeter’s relevant tweets. Use the
retweeter’s relevant tweets to build the next
layers of the network. Repeat twice. Com-
pute network analytics and visualize with
NetworkX/matplotlib and Gephi

3



Figure 1: Follower network grouped by modular-
ity

Using the same method to visualize the
retweet network, in Figure 2 we can see there
are fewer clusters in the retweet network with
one large cluster.

Figure 2: Retweet Network grouped by modular-
ity

• Network of Mentions (Using Cytoscape &
Gephi): Nodes are tweet authors and persons
mentioned in the tweets and an edge is men-

tioned between the tweet author and the per-
son who is mentioned. This network will help
identify the luminaries who are most men-
tioned or interactions between the different
luminaries.

Start with a set of tweets from a list of lu-
minaries, the data must contain data of tweet
text and author data of tweets. Perform NLP
on tweet text to extract the names of persons
mentioned in the tweet. Load this dataset into
Cytoscape or Gephi and perform analysis.
Perform statistics with Gephi and do analysis
on degree, In degree, out-degree, modularity,
and Statistical inference to identify commu-
nities.

Figure 3: Mentions Network grouped By Statisti-
cal Inference

5.3 Neo4j

• Figure 4: After building the Followers and
Retweet network, we construct a network
with tweets and users data. Next, load
nodes and relationships from csv. Then,
Compute network analytics with Graph Data
Science Library, visualize in Neo4j Bloom,
Neo4jupyter, and jgraph.

• Figure 5: The nodes are colored by Louvain
clusters. There is a large number of clusters
with few connections. There is one cluster
in the middle of the left edge that consists of
nodes that do not have a better fit than any
other cluster.

5.4 igraph

We created a bigram network with R to analyze
text contained in tweet data. The network con-

4



Figure 4: Neo4j schema for the combined network

Figure 5: Combined network visualized in Neo4j
colored by Louvain clusters

nects pairwise occurrences of words that appear
in a single tweet.

5.5 Gephi

We used Gephi with the Twitter API v2 plug-in
as a self-contained environment to collect stream-
ing data, analyze the network, and visualize the
results. We also found Gephi to be a useful tool
for visualizing and analyzing data exported from
NetworkX.

5.6 Cytoscape

We created a mentions network in Network. We
felt Cytoscape is very difficult to use and it takes a
lot of time to render the Network. We had to reset
and restart the work sessions several times.

6 Conclusion and Discussion

This project provides data collection methods,
data sets, network science analytics, and visualiza-
tion methods. We were able to cover popular net-
work libraries for Python, R, and standalone soft-
ware such as Gephi, Cytoscape, and Neo4j. We

could ingest, analyze and visualize various net-
works with different methods. The visualization
can be presented either on a web page or pack-
aged, and sent out as email newsletters, or even,
as a curated account back to Twitter. We regret
not using the first three weeks of the semester to
learn more about network science concepts and
tools. Having a general understanding of what
questions are asked and answered in network sci-
ence and how NetworkX, Gephi, and Neo4j work
would have helped us conceptualize the project
and focus on what we wanted to accomplish for
the semester more quickly. We believe the Intro to
Network Science materials, datasets that are col-
lected and cleaned, and code from this semester
will provide any following team with a better en-
vironment to improve the project. As of the writ-
ing of this report (December 2022), the state of
Twitter as a company is somewhat unstable. Up
to this point, Twitter’s data has been open source
and available for developers. However, that might
not always be the case. Theoretically, the analysis
of this project can be done with any data as long
as you can assign nodes and edges. We are using
Twitter not only because the data is available but
also because Twitter is the only public platform
that is real-time, used by professionals and a wide
level of practitioners.

In the future, we recommend the following pos-
sible extensions:

• Build a large, dense, well-connected net-
work: Pick one approach and build a single
network that contains as many types of rela-
tionships as possible e.g., retweets, follows,
mentions, quotes, replies, etc. This will take
time to allow users to post/respond to tweets,
follow new accounts, etc., and accommodate
API rate limits and monthly quotas.

• Identify luminaries, and detect sub-
communities: From this network, use
centrality measures to identify a group of
luminaries, and apply community detection
to find sub-communities.

• Create an interest graph: Incorporate Tweet
text into the network described above. From
tweet texts, Identify interests unique to sub-
subcommunity and link sub-communities by
common interests, and collect the text of im-
portant tweets.

• Consider how to handle large datasets: A
larger, more connected network might be bet-

5



ter suited to be analyzed in Neo4j rather
than NetworkX. It might also be useful to
explore ways to connect Neo4j, Gephi, and
NetworkX. Other adaptations include using
a more powerful cloud computing platform,
e.g., Google Colab/Cloud Platform, or IU’s
High-Performance Computing clusters.

• Visualize for the web: Find ways to create
a graph visualization with a web-specific li-
brary like d3.js from NetworkX and Neo4j.

• Build a web app: Create an interface to al-
low users to upload/point to/collect data, run
centrality and community detection analyt-
ics, and see a visualization. Doyle Groves,
one of the project sponsors, has an app
www.chattersum.com that achieves a similar
goal for a larger Twitter data set.

References
Hric D. Fortunato, S. 2016. Community detection in

networks: A user guide. Physics Reports, 659:1–44.

Kompatsiaris I. Vakali A. Spyridonos P. Papadopou-
los, S. 2012. Community detection in social media.
Data Min. Knowl. Discov, 24:515–554.

Lörcher I. Brüggemann M. Walter, S. 2019. Scientific
networks on twitter: Analyzing scientists’ interac-
tions in the climate change debate. Public Under-
standing of Science, 28(6):696–712.

6

https://doi.org/https://doi.org/10.1016/j.physrep.2016.09.002
https://doi.org/https://doi.org/10.1016/j.physrep.2016.09.002
https://doi.org/https://doi.org/10.1007/s10618-011-0224-z
https://doi.org/https://doi.org/10.1016/j.physrep.2016.09.002
https://doi.org/https://doi.org/10.1016/j.physrep.2016.09.002
https://doi.org/https://doi.org/10.1016/j.physrep.2016.09.002

